Eigen-Voice Based Anchor Modeling System for Speaker Identification Using MLLR Super-Vector
نویسندگان
چکیده
In this paper, we propose an anchor modeling scheme where instead of conventional “anchor” speakers, we use eigenvectors that span the Eigen-voice space. The computational advantage of conventional Anchor-modeling based speaker identification system comes from representing all speakers in a space spanned by a small number of anchor speakers instead of having separate speaker models. The conventional “anchor” speakers are usually chosen using data-driven clustering and the number of such speakers are also empirically determined. The use of proposed eigen-voice based anchors provide a more systematic way of spanning the speaker-space and in determining the optimal number of anchors. In our proposed method, the eigenvector space is built using the Maximum Likelihood Linear Regression (MLLR) super-vectors of non-target speakers. Further, the proposed method does not require calculation of the likelihood with respect to anchor speaker models to create the speaker-characterization vector as done in conventional anchor systems. Instead, speakers are characterized with respect to eigen-space by projecting the speaker’s MLLR-super vector onto the eigen-voice space. This makes the method computationally efficient. Experimental results show that the proposed method consistently performs better than conventional anchor modeling technique for different number of anchor speakers.
منابع مشابه
Sub-vector Extraction and Cascade Post-Processing for Speaker Verification Using MLLR Super-vectors
In this paper, we propose a speaker-verification system based on maximum likelihood linear regression (MLLR) super-vectors, for which speakers are characterized by m-vectors. These vectors are obtained by a uniform segmentation of the speaker MLLR super-vector using an overlapped sliding window. We consider three approaches for MLLR transformation, based on the conventional 1-best automatic tra...
متن کاملAnchor and UBM-based multi-class MLLR m-vector system for speaker verification
In this paper, we propose two techniques to extend the recently introduced global Maximum Likelihood Linear Regression (MLLR) transformation (i.e. super-vector) based m-vector system for speaker verification into a multi-class MLLR mvector system in the Universal Background Model (UBM) framework. In the first method, Gaussian mean vectors of the UBM are first grouped into several classes using ...
متن کاملFast computation of speaker characterization vector using MLLR and sufficient statistics in anchor model framework
Anchor modeling technique has been shown to be useful in reducing computational complexity for speaker identification and indexing of large audio database. In this technique, speakers are projected onto a talker space spanned by a set of predefined anchor models which are usually represented by Gaussian Mixture Models (GMMs). The characterization of each speaker involves calculation of likeliho...
متن کاملEigen-mllr Coeecients as New Feature Parameters for Speaker Identiication
Eigen-MLLR coe cients are proposed as new feature parameters for speaker-identi cation in this paper. By performing principle component analysis on MLLR parameters among training speakers, the eigen-MLLR coe cients (EMCs) are derived as the coe cients for the eigenvectors. The discriminating function of the new EMC features based on the Fisher criterion is found to be ten times larger than that...
متن کاملFast speaker adaptation using eigenspace-based maximum likelihood linear regression
This paper presents an eigenspace-based fast speaker adaptation approach which can improve the modeling accuracy of the conventional maximum likelihood linear regression (MLLR) techniques when only very limited adaptation data is available. The proposed eigenspace-based MLLR approach was developed by introducing a priori knowledge analysis on the training speakers via PCA, so as to construct an...
متن کامل